

How to make a node of IoT by using ESP32-S3

DevKitC

Juozas Kimtys - How to make a node of IoT
by using ESP32-S3 DevKitC – doc. ver.1.1

Juozas Kimtys - How to make a node of IoT by using ESP32-S3 DevKitC – doc. ver.1.1 1

Table of contents:

First impression __ 1

Two USB connectors available ___ 2

Layout of GPIO connector __ 3

Power supply options __ 4

ESP-IDF (Espressif IoT Development Framework) __________________________________ 4

Development by using Espressif-IDE __ 4

Using ESP-IDF 5.0 PowerShell ___ 4

Development by using Arduino IDE ___ 5

Unsuccess of development by using Platformio IDE ________________________________ 5

Using of FreeRTOS __ 5

Using of bootloader ___ 6

Using of SPIFFS ___ 6

Selection of module type in Arduino IDE ___ 6

Blink LED example __ 6

WiFi Web Server LED Blink on Arduino __ 6

Unsuccess of “HTTP Restful API Server Example” on Espressif-IDE ____________________ 6

HTTP File Server Example on Espressif-IDE _______________________________________ 6

Is a big advantage of using built-in JTAG adapter? ________________________________ 7

Revision History __ 7

Table of figures:

Figure 1 - ESP32-S3 DevKitC function diagram from sellers site. .. 2

Figure 2 - Layout of GPIO connector from sellers site. Pins numbered as GPIO numbers. 3

Figure 3 - Configuration of Debug in Espressif-IDE ... 4

Figure 4 - In Visual Studio Extensions manager search for Platformio IDE... 5

Figure 5 - Browser window showing this application web interface .. 7

 First impression

 Information about similar module and various links is here:

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-

devkitc-1.html

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html

Juozas Kimtys - How to make a node of IoT by using ESP32-S3 DevKitC – doc. ver.1.1 2

The module bought at AliExpress (MI YU KOUNG Official Store) is slightly different than shown on

the site of Espressif – there is other type of USB connectors and other placement of parts. Look to

picture below:

FIGURE 1 - ESP32-S3 DEVKITC FUNCTION DIAGRAM FROM SELLERS SITE.

Two USB connectors available

There are two USB connectors available on the module. One, marked as “COM” (marking is at

bottom side) allows to have Virtual Serial port for communication with our application (lines RX and

TX of microcontroller). Also, this port can control our program upload process by using RTS and DTR

serial port lines to GPIO0 and to CHIP_PU (RST). Second, marked as “USB” (marking is at bottom side)

allows to use integrated into ESP32-S3 microcontroller JTAG-to-USB debug adapter. These both USB

ports can be used to upload our software from Espressif-IDE or from Arduino. It appears, that RST

button also sometimes is required, regardless of additional control lines of COM port.

Juozas Kimtys - How to make a node of IoT by using ESP32-S3 DevKitC – doc. ver.1.1 3

Layout of GPIO connector

FIGURE 2 - LAYOUT OF GPIO CONNECTOR FROM SELLERS SITE. PINS NUMBERED AS GPIO NUMBERS.

Juozas Kimtys - How to make a node of IoT by using ESP32-S3 DevKitC – doc. ver.1.1 4

Power supply options

The module must be powered with 5V. Any one of two USB ports can supply the module. Also,

we can use external 5V power connected to GPIO connectors pin marked as “5V in”. All three power

inputs can be used independently and simultaneously, because this module contains 3 Schottky type

diodes. Note1: one of these diodes can be shorted by using SMD solder joint. In such case pin “5V in”

on GPIO connector becomes as “5V out”. Note2: official schematic of similar module on the site of

Espressif does not contain that third diode, but contains 6 pieces of ESD protection diodes. Two pins

on GPIO connector marked as “3V3” can supply external devices.

ESP-IDF (Espressif IoT Development Framework)

Development of our application, independently of tool in use, will be based on ESP-IDF

(Espressif IoT Development Framework) : https://docs.espressif.com/projects/esp-

idf/en/latest/esp32/get-started/index.html#introduction Actual version now is “5”.

Development by using Espressif-IDE

By using Espressif-IDE, we can find a huge quantity of examples ready to review, modify and

upload to our module from this IDE. Examples are located in the “examples” directory – as in following

case: C:\Espressif\frameworks\esp-idf-v5.0\examples\protocols\http_server\restful_server Also,

Espressif-IDE contains interface to debug with OpenOCD software together with JTAG adapter

(integrated into the microcontroller or some external).

FIGURE 3 - CONFIGURATION OF DEBUG IN ESPRESSIF-IDE

To use Espressif-IDE, we need Java SDK installed into our Windows computer. Get it from

https://www.oracle.com/java/technologies/downloads/#jdk19-windows

Also, it must be installed Python – to run various scripts.

Using ESP-IDF 5.0 PowerShell

Before editing, compiling, building, debugging, and uploading our project in Espressif-IDE, for

each work session we must run this special tool and related script. Shortcut to this tool appears on

our Windows desktop after installation of Espressif-IDE. The script configures required Windows

environmental variables and opens the window of Windows Power Shell, which appears as configured

in right way to run the command line tool idf.py with parameters. Firstly, in each shell session, we

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html#introduction
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html#introduction
https://www.oracle.com/java/technologies/downloads/#jdk19-windows

Juozas Kimtys - How to make a node of IoT by using ESP32-S3 DevKitC – doc. ver.1.1 5

must navigate to our project folder (by using Windows command line commands). Note: project folder

and all required scripts and configuration files appears after creating new project. One of required

actions for new project is to run (being in the project folder) idf.py with parameter “menuconfig”

(idf.py menuconfig). During this first session of new project we must enter, at least, Wi-Fi connection

credentials and save them. Note: It is also possible to make configuration of our project from within

of Project Explorer of Espressif-IDE – by double clicking on the file “sdkconfig”.

Development by using Arduino IDE

By using Arduino IDE, we can find a huge quantity of examples ready to review, modify and

upload to our module from this IDE. Also, Arduino IDE contains interface to debug with debug software

integrated in Arduino IDE together with JTAG adapter (integrated into the microcontroller or some

external). In “Preferences->Additional boards manager URLs” we must enter

“https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

“. In the “Tools->Partition scheme” we must select memory variant matching to our module (our is

“8R2”). We can upload and debug our module by using two options: 1) Virtual Serial port or 2) JTAG

debug adapter integrated in the ESP32-S3 chip. Selection of these options we are doing by making

selections in the “Tools-> Port”. Sure, USB cable/cables must be connected.

Unsuccess of development by using Platformio IDE

After a few hours of attempts, we can conclude that Platformio IDE does not contain any thing

that is not presented in Arduino IDE. This is only additional layer on top of Arduino IDE or on top of

Espressif-IDE. Painful and not useful.

It's built on top of Microsoft's Visual Studio Code – free, open source, and MIT licensed editor.

Web sites containing information:

 https://docs.espressif.com/projects/esp-idf/en/latest/esp32/third-party-

tools/platformio.html

https://platformio.org/platformio-ide?utm_source=docs.espressif.com

In Visual Studio Code go to Extensions and search for platformio ide:

FIGURE 4 - IN VISUAL STUDIO EXTENSIONS MANAGER SEARCH FOR PLATFORMIO IDE

https://docs.platformio.org/en/latest/integration/ide/vscode.html#quick-start

Using of FreeRTOS

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/third-party-tools/platformio.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/third-party-tools/platformio.html
https://platformio.org/platformio-ide?utm_source=docs.espressif.com
https://docs.platformio.org/en/latest/integration/ide/vscode.html#quick-start

Juozas Kimtys - How to make a node of IoT by using ESP32-S3 DevKitC – doc. ver.1.1 6

It seems that all examples in Espressif-IDE use preconfigured FreeRTOS. It seems that we don’t

need special actions to allow and to configure the FreeRTOS (if we don’t need any special).

Using of bootloader

It seems that all examples in Espressif-IDE use preconfigured bootloader. It seems that we

don’t need special actions to allow and to configure the bootloader (if we don’t need any special).

Also, we will see, that each time we upload our project to chip, the bootloader is uploaded together.

Using of SPIFFS

SPIFFS is a file system well adopted to use with Flash memory. It seems that all examples, that

requires files, in Espressif-IDE, by default, use preconfigured SPIFFS. It seems that we don’t need

special actions to allow and to configure the SPIFFS (if we don’t need any special). But now, at least

for us, it is not clear how to manage SPIFFS creation, deletion, filling with files in Espressif-IDE. If to

use Arduino, this seems is clearer – 1) during compiling Arduino must know memory configuration of

our module (“8R2” for our module) and, 2) during uploading or running of any of project, the Arduino

does not touches partition and files inside the existing SPIFFS, 3) we need an another Arduino project

from examples in case of necessity to manage SPIFFS creation, deletion, filling with files in Arduino, 4)

sure, any of our Arduino projects may have functionality to manage SPIFFS.

Selection of module type in Arduino IDE

We will not find exact module matching to our in the list of boards of Arduino IDE. Use “ESP32-

S3-USB-OTG”.

Blink LED example

On Arduino we will need the library: #include <Adafruit_NeoPixel.h> Works well. Similar

example on Espressif-IDE knows which pin is connected to NeoPixel LED on the module. But the

example on Arduino needs to edit pin number to #define PIN_NEOPIXEL 48.

WiFi Web Server LED Blink on Arduino

“Examples->WiFi->SimpleWiFiServer”. Works well. Very simple web interface is generated by

code of the example.

Unsuccess of “HTTP Restful API Server Example” on Espressif-IDE

This complex example uses files for web presentation created with vue. But this example does

not contain already generated files for web – we must prepare our environment to compile vue files.

Not success to generate these files, vue compilation does not works, we need much work to find

correct version of vue and related libraries. Attempt to use loaded by using other tools other web files

instead of using project generated web content – not success. Without correct files, matching to server

code, this example can be debugged only – in debugger we can look how our Rest interface reacts to

HTTP requests. But, after restart, we have an endless restart loop.

HTTP File Server Example on Espressif-IDE

This example works fine. We can view web interface of this example application, upload files

to SPIFFS, browse uploaded files. Also, we can observe, that during working with other application,

files in SPIFFS, previously loaded by other application, will remain.

Juozas Kimtys - How to make a node of IoT by using ESP32-S3 DevKitC – doc. ver.1.1 7

FIGURE 5 - BROWSER WINDOW SHOWING THIS APPLICATION WEB INTERFACE

Is a big advantage of using built-in JTAG adapter?

We can see that Virtual Serial port on Arduino IDE and on Espressif-IDE allows to make all

required tasks.

Revision History

Version Date Comments

ver.1.1 2023.02.08 New chapters, various text
improvements

ver.1.0 2023.02.02 Initial release

